دانشنامه ساخت و سازشرکت ها

مانی سلیمانی –مدیر فنی – فروش گروه تخصصی عایق‌بندی سازه برند مانسیل

پلی یورتان چیست چه کاربرد‌هایی دارد؟

پلی یورتانها دسته ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی بخوبی توان بهره بردای از این ترکیبات را در کاربردهای گوناگون دارند. مثالهای متعددی برای کاربردهای فراوان این ترکیبات وجود دارد، از جمله پوششهای شفاف برای پوشش دهنده های تک لایه مخصوص بامها و رنگهای مشخص کردن محل گذر عابرین پیاده و غیره .

تاریخچه و کشف پلی یورتان

پلی‌یورتان‌ها را اولین بار اوتو بایر در سال ۱۹۳۷ در آلمان کشف کرد و بعد از آن این مواد با داشتن خواص ویژه پیشرفت بسیار زیادی را در انواع صنایع جهان داشتند. اولین پلی‌یورتان، از واکنش دی‌ایزوسیانات تولید شدند. آلیتان‌ها ترکیباتی هستند که در ساختار آن‌ها پیوند یورتانی وجود دارد. پلی‌یورتان (PU) نام عمومی پلیمرهایی است که دارای پیوند یورتانی می‌باشند. پیوند یورتانی از طریق واکنش افزایشی بین یک گروه ایزوسیانات و یک ترکیب دارای هیدروژن فعال مثل گروه هیدروکسیل تشکیل شده‌است. گروه‌های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آن‌ها نیاز به افزایش دما ندارد. (واکنش در دمای محیط صورت می‌گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می‌آید. خلاصه اینکه، پلی‌یورتان در اشکال مختلف مانند: فراورده‌های فوم، فیلم، الاستومرها، پودرها، مایعات و امولسیون‌ها قابل تولید هستند. ترکیباتی که دارای گروه ایزوسیانات هستند عبارتند از:

۲و۴ یا ۲و۶ تولوئن دی ایزوسیانات
۴و۴ یا ۲و۴ دی فنیل متان دی ایزوسیانات
۱و۶ هگزا متیلن دی ایزوسیانات

علاوه بر موارد ذکر شده، ترکیبات ایزوسیاناتی دیگری نیز وجود دارند. ترکیباتی که دارای دو گروه هیدروکسیل (OH) یا بیشتر باشند را پلی اُل می‌نامند و بطور معمول از گونه‌های زیر استفاده می‌شود:

پلی اتر پلی ال
پلی استر پلی ال
پلی کربنات پلی ال
پلی کاپرولاکتون پلی ال

به علاوه، به جای گروه‌های هیدروکسیل، ترکیباتی مثل اسیدهای کربوکسیلیک و آمین‌ها، که دارای هیدروژن فعال هستند نیز می‌توانند در ترکیب با ایزوسیاناتها مورد استفاده قرار گیرند. به همین دلیل، زمانی‌که صحبت از پلی‌یورتان‌ها می‌شود، می‌توان گفت که گونه‌های بیشماری از آن‌ها وجود دارد. با توجه به آنچه گفته شد می‌توان نتیجه گرفت، پلی‌یورتان‌ها در موارد گوناگونی مانند: فوم‌های نرم، فوم‌های سخت، الاستومرها، چسب‌ها، روکش‌ها و پایه‌های رنگی بکارگرفته می‌شوند.

کاربرد پلی یورتان | کاربرد پلی اورتان

پلی‌یورتان‌ها به شکلهای مختلف از جمله فوم‌های نرم، فوم‌های سخت؛ الاستومرها، ترموپلاستیک الاستومرها، رزین، رنگ، پوشش و… در دنیا کاربرد دارند. یکی از کاربردهای پلی‌یورتان‌ها، استفاده به عنوان پوشش لوله‌های مدفون در خاک با هدف حفاظت در برابر خوردگی می‌باشد. پلی‌یورتان مورد استفاده در این روش، از نوع ۱۰۰٪ جامد و با مواد اولیه ۲ جزئی است ولی نبایستی چسبندگی زیادی به سطح لوله از این پوشش توقع داشت. پلی اورتان‌ها در شرایط کاربری خاص مانند دمای بالای خط لوله یا تعمیرات پوشش اصلی کاربرد دارند و کمتر به عنوان پوشش اصلی خطوط انتقال استفاده می‌شوند. استفاده از پوشش‌های پلی‌یورتان جهت پوشش داخلی خطوط انتقال کاربرد بسیار محدودی داشته و به علت آزادکردن ترکیبات سمی ایزوسیانات جهت پوشش داخلی توصیه نمی‌گردد. کاربرد پلی ن ترکیبات نیز به‌طور پیوسته رو به توسعه است.

ماستیک‌های پلی اورتان و سیلیکون با توجه به خواص شیمیایی و مکانیکی خود داری کاربردها مختلفی می‌باشند. در کانال هی آب و فاضلاب، مخازن آب و فاضلاب، کف‌سازی سالن‌ها، پیاده‌روها، درز قطعات پیش‌ساخته و کلیه درزهایی که باید در برابر نفوذ آب و دیگر میعات محافظت گردد استفاده می‌شود.

چگونگی ساخت ترکیبات پلی‌یورتان

آمیختن پلی‌یورتان‌ها با پلی اوره امری متداول است و روندی رو به رشد دارد. پلی‌یورتان‌ها دسته‌ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی به خوبی توان بهره‌برداری از این ترکیبات را در کاربردهای گوناگون دارند از جمله پوشش‌های شفاف برای پوشش دهنده‌های تک لایه مخصوص بام‌ها و رنگ‌های مشخص کردن محل گذر عابرین پیاده و غیره… مقاومت پلی‌یورتان‌ها در برابر سایش ضربه و ترک خوردگی بسیار خوب است، از جمله ویژگی‌های آن‌ها پخت سریع و کامل در دمای محیط است. پلی‌یورتان‌ها آلیفاتیک از انواع آروماتیک گرانتر هستند. به همین خاطر انواع آروماتیک و نمونه‌های اپوکسی دار در استری‌ها، رنگهای پایه و پوشش‌های رابط بکار می‌روند. در حالی که آلیفاتیک‌ها ویژه پوشش نهایی هستند. استفاده از پوشش‌های محافظ برای جلوگیری از پدیده خوردگی در ساختارهای فولادی که آستر و پوشش پایه آن‌ها از نوع سامان‌های اپوکسی دار است، نمونه‌ای از کاربردهای مهم پلی‌یورتان‌ها محسوب می‌شوند. مورد دیگر، سامانه‌های پوشش دهنده کف است که در آن‌ها نیز انواع پوشش‌های پایه را می‌توان بکار برد، گاهی پوشش نهائی از نوع یورتان برای لایه نهایی کف نیز کفایت می‌کند. کاربرد پلی‌یورتان‌ها و پلی اوره‌ها در کفپوش‌ها انواع فناوری کاربرد پوشش‌های کف همگی بر دو اصل استوارند. یکی از آن‌ها فناوری فیلم نازک است که یک یا چند پوشش با ضخامت حدود ۵۰ تا ۱۲۵ میکرون روی سطح کف پوشش داده می‌شود. درزگیری و غبارزدایی نیز از جمله مراحل مهم در این روش محسوب می‌شوند که هدف نهایی آن‌ها رسیدن به کفپوش‌هایی با طرح‌های زیر و مزین است. رزین‌های مورد مصرف در پوشش‌های کف عبارتند از: آلکیدها، اپوکسی‌ها یا اپوکسی استری بر پایه آب و حلال، مخلوط‌های معلق، آمیخته‌های پلی‌یورتانی بر پایه آب و انواع پلیمرهای آکریلیکی، بهترین حالت برای این نوع کفپوش‌ها آن است که اثر مواد شیمیایی یا آب روی سطح کفپوش براحتی برطرف شود و لکه‌ای بر جای نماند. پوشش‌های آلکیدی در مقابل سودسوزآور بسیار ضعیف عمل می‌کنند. نوع دیگر پوشش دهی فناوری فیلم ضخیم است که در آن حداقل ضخامت پوشش ۲۰۰ میکرون و حداکثر آن گاهی به ده میلی‌متر هم می‌رسد. هدف از این نوع پوشش دهی پر کردن ترکها، حفره‌ها و تسطیح سطوح شدیداً سایید شده‌است پوشش‌های ضخیم هستند. سیمان و مصالح سنگی موردنظر با انواع رزینها مخلوط می‌شوند اپوکسی‌ها، پلی‌یورتان‌های آروماتیک (غالباً روغن کوچک و MDI دی فنیل متان ۴_ ،۴_ دی ایزوسیانات لاتکس SBR و اکریلیکی پر مصرف‌ترین رزینها هستند. روش کار به شکل پاشش یا ریختن پوشش روی سطح و بدنبال آن ماله کشی دستی یا اعمال به وسیله غلتک است. در برخی از موارد در کفپوش‌های ضخیم از استرهای غیر اشباع، وینیل استرها و اپوکسی‌های با میزان صد در صد جامد استفاده می‌شود. پلی‌یورتان‌های آروماتیک بر پایه MDI برای پوشش دهی کف زیاد بکار می‌روند، چرا که MDI ایزوسیاناتی نسبتاً ارزان است. جالب است که بدانید مولکول MDI و پلیمر سنتز شده از آن به راحتی پرتو فرابنفش را جذب می‌کنند، زرد شدن پوشش‌هایی که در معرض نور خورشید واقع شده‌اند به همین دلیل همین مسئله است

سامانه‌های بر پایه سیمان

اخیراً تعدادی از شرکت‌ها در کف پوش‌های مورد استفاده خود، سیمان‌های اصلاح شده پلی‌یورتانی را بکار برده‌اند. از جمله خواص مهم در این ترکیب می‌توان به کم بودن گاز دی اکسید کربن به وجود آمده، مسطح شدن خوب و زمان کاری حدود ۳۰ دقیقه آن اشاره کرد. هر سه جزء سازنده روی خواص پوشش کف بر پایه سیمان اصلاح شده با پلی‌یورتان اثر می‌گذارند. در این نوع سامانه‌های پلی‌یورتانی از واکنش اجزای سازنده با آب، اوره و گاز دی‌اکسید کربن به وجود می‌آید که علت آن وجود MDI در فرمول است. MDI با گروه‌های هیدروکسی در روغن کرچک که نوعی تری گلیسیرید اسید الکل چرب است، واکنش می‌دهد مخلوط سیمان – پلی‌یورتان پوشش سختی به وجود می‌آورد که می‌توان انواع پوشش‌های به حالت مایع را برای تزئین روی آن بکار برد. آهک موجود در ترکیب آب جذب می‌کند و سرعت سخت شدن سیمان به این روش کنترل می‌شود. در ضمن آهک مقداری از دی‌اکسید کربن حاصل از واکنش MDI و آب را نیز جذب خود می‌کند. واکنش آهک با دی‌اکسید کربن و آب بشرح زیر است:

CaO+CaCO3 —-> CaCO3 Ca(OH)+ CO2 —-> CaCO3+H2O در فناوری نوین بخشی از سامانه رنگزای پوشش را ملات تشکیل می‌دهد. ملات مخلوطی از رزین‌های ویژه و جزء رنگزاست که از سیمان و الیاف تشکیل می‌شود. الیاف انعطاف‌پذیری لازم را به پوشش داده و رشد ترک را کنترل می‌کند، ضمن آنکه استحکام کششی را بهبود می‌بخشد. استحکام کششی ترکیبات سیمانی مانند اکثر مواد سرامیکی کم، ولی استحکام فشاری آن‌ها زیاد است. با افزودن الیاف با برخی از پلیمرها می‌توان ویژگی‌های رشد ترک را در پوشش کنترل کرد. وقتی سیمان با آب ترکیب می‌شود. یونهای OH به تعداد فراوان تشکیل شده و PH شدیداً بالا می‌رود. اگر از این نوع پوششها برای پوشش دهی سطوح فولادی استفاده شود، محیط قلیایی حاصل فولاد را در برابر خوردگی محافظت می‌کند. درست مانند آنچه که در بتن‌های مسطح با میلگردهای فولادی به وقوع می‌پیوندد. این نوع پوشش‌ها را می‌شود روی سطوح عمودی مانند لوله‌های انتقال نفت به راحتی مورد استفاده قرارداد. حاصل کار، سامانه‌های ارزان قیمت مقاوم در برابر خوردگی است که بسیار انعطاف‌پذیر، محکم وبا دوام نیز هستند. نتیجه‌گیری استفاده از پلی‌یورتان‌ها، پلی اوره‌ها و رزین‌های پراکنشی پلی‌یورتانی و مواد شرکت‌کننده در واکنش‌های آن‌ها به‌طور پیوسته در حال رشد و توسعه است. این مواد بیشترین کاربرد را در پوشش دهی سطوح گوناگونی دارند. مسائل زیست‌محیطی و مقررات جدید، فناوری نوین ساخت پوشش را به سوی سامان‌های بدون حلال، پر جامد و سامانه‌های بر پایه آب هدایت می‌کنند. در آینده سامانه‌های پوشش دهی عاری از ایزوسیانات کاربری بیشتری پیدا خواهند کرد. طرح‌های نوینی برای سامانه‌های سیمانی اصلاح شده با پلیمرها به منظور حفاظت کف و سطوح فولادی وجود دارد.

پلی‌یورتان کوپلیمری پرکاربرد

در اواخر سال ۱۹۸۰ تعدادی از دانشمندان، شیمی، ساختار و مورفولوژی سطح پلی‌یورتان‌ها را مورد بررسی قرار دادند و به تدریج روش‌های جدید پوشش دهی سطح به همراه پیوندهای مواد دیگر به سطح پلی‌یورتان‌ها، با هدف بهبود خونسازگاری ابداع شد.

الاستومرهای پلی‌یورتانی، خانواده‌ای از کوپلیمرهای توده‌ای بخش شده‌است که کاربردهای مهمی در زمینه‌های گوناگون صنعتی و پزشکی پیدا کرده‌است. اولین پلی‌یورتان، از واکنش دی ایزوسیانات آلیفاتیک با دی آمین به دست آمد. اتو بایر و همکارانش اولین بار این پلی‌یورتان را معرفی نمودند که به شدت آبدوست بود و بنابراین به عنوان پلاستیک یا فیبر نمی‌توانست مورد استفاده قرار گیرد. واکنش بین دی ایزوسیانات‌های آلیفاتیک و گلیکول‌ها منجر به تولید پلی‌یورتانی با خصوصیات پلاستیکی و فیبری گردید. به دنبال آن، با استفاده از دی ایزوسیانات آروماتیک و گلیکول‌های با وزن مولکولی بسیار بالا، پلی‌یورتانی به دست آمد که خانواده مهمی از الاستومرهای ترموپلاستیک به‌شمار می‌رود.

خواص یورتان‌ها از مواد ترموست بسیار سخت تا الاستومرهای نرم تغییر می‌کند. از پلی‌یورتان‌های ترموپلاستیک، در ساخت وسایل قابل کاشت بسیار مهمی استفاده می‌شود، چرا که دارای خواص مکانیکی خوب نظیر استحکام کششی، چقرمگی، مقاومت به سایش و مقاومت به تخریب شدن، به علاوه زیست سازگاری خوب می‌باشند که آن‌ها را در گروه مواد مناسب جهت کاربردهای پزشکی قرار می‌دهد.

کاربردهای پلی‌یورتان‌ها

با استفاده از پلی اترها به عنوان پلی ال، در سنتز پلی‌یورتان می‌توان اندامهای کاشتنی طولانی مدت تهیه نمود، که در قلب مصنوعی، کلیه مصنوعی، ریه مصنوعی، هموپرفیوژن، لوزالمعده مصنوعی، فیلترهای خونی، کاتترها، عروق مصنوعی، بای پس سرخرگ‌ها یا سیاهرگ‌ها، دندان و لثه، بیماری‌های ادراری، ترمیم زخم، رساندن یا خارج کردن مایعات، نمایش فشار عروق، آنژیوپلاستی، مسدود کردن عروق، جراحی عروق آئورت و کرونری، دریچه‌های قلب سه لتی و دولتی کاربرد دارند.

در صورتی که از پلی اترها به عنوان پلی ال، در سنتز پلی‌یورتان استفاده شود، پلی‌یورتان‌های زیست تخریب پذیر مدت تهیه می‌شود که به‌طور مثال در کانال هدایت بازسازی عصب، ساختارهای قلبی –عروقی، بازسازی غضروف مفصل و منیسک زانو، برای تعویض و جایگزینی استخوان اسفنجی، در سیستم‌های رهایش کنترول شده دارو و برای ترمیم پوست کاربرد دارد.[۱]

پلی اورتان به صورت فوم پاششی کاربرد زیادی در عایق کاری ساختمان‌ها دارد. گفته می‌شود فوم پلی اورتان بهترین عایق شناخته شده در جهان از نظر ضریب انتقال حرارت است.[۲]

یکی از معایب فوم‌های پلی یورتان شعله‌پذیری این مواد است ولی بتازگی روش‌هایی برای حل این مشکل ابداع شده که از این میان می‌توان به روکش سیمانی یا پلاستر و استفاده از فرمولاسیون‌های جدید فوم‌های پلی یورتان نسوز اشاره کرد که قیمت بالاتری دارند.
تأثیر ساختار شیمیایی و مورفولوژی سطح روی خون سازگاری پلی‌یورتان

در اواخر سال ۱۹۸۰ تعدادی از دانشمندان، شیمی، ساختار و مورفولوژی سطح پلی‌یورتان‌ها را مورد بررسی قرار دادند و به تدریج روش‌های جدید پوشش دهی سطح به همراه پیوندهای مواد دیگر به سطح پلی‌یورتان‌ها، با هدف بهبود خونسازگاری ابداع شد. ترکیب شیمیایی پلی‌یورتان‌ها جهت بهبود خونسازگاری با تغییرات بسیار زیادی همراه شده‌است. از جمله این موارد سنتز پلی‌یورتان یا پلی‌یورتانِ یورا با قسمت‌های نرم آبدوست است.

«Cooper»، نیز در مورد ارتباط بین شیمی پلی ال‌ها و خون سازگاری پلی‌یورتان‌ها، تحقیقاتی را بر روی نمونه‌های مختلف پلی‌یورتان‌ها با پلی ال‌های متفاوت نظیر PEO, PTMO, PBD (پلی بوتادین) و PDMS انجام داد. این پلی‌یورتان‌ها به روش پلیمریزاسیون دو مرحله‌ای تهیه شدند و بر روی لوله‌های پلی اتیلنی پوشش دهی شده و سپس درون بدن سگ قرار گرفتند تا پاسخ لخته زایی آن‌ها مشخص گردد. پلی‌یورتان با پلی ال PDMS کمترین لخته زایی را نسبت به نمونه‌های دیگر نشان داد. طبیعت آبگریز PDMS باعث بهبود آبگریزی سطح پلی‌یورتان پایه PDMS و در نتیجه توجیهی برای بهبود خون سازگاری آن نسبت به سایر موارد می‌شود و میزان چسبندگی اولیه پلاکت‌ها بااستفاده از سولفونات یا پوشش‌هایی نظیر هپارین در تغییر پاسخ خون به این مواد نقش بسیار عمده‌ای را ایفا می‌کنند. محققی به نام Santerre [۵۵]، پلی‌یورتان‌هایی را بر پایه سولفونات سنتز نمود که دارای گروه‌های مختلف سولفور(۳٫۱٪ ۱٫۴٪) بود. در نمونه‌های با گروه‌های سولفونات بیشتر زمان لخته زایی افزایش یافت.
روش‌های بهبود خواص سطحی پلی‌یورتان‌ها

با توجه به اینکه خون سازگاری یک بیومتریال بستگی مستقیم به شیمی سطح آن دارد، تغییر در وضعیت سطحی کمک بسیار زیادی در حل مشکلات خون سازگاری خواهد نمود. از جمله موادی که در این مورد نتایج و رضایت بخشی را در بهبود خونسازگاری نشان داده‌اند، می‌توان به سولفونات پلی اتر یورتان، پیوند سطح اکریل آمید و دی اکریل آمید با پلی اتر یورتان، اتصال فسفوریل کولین به سطح پلی اتر یورتان با استفاده از پرتو UV و پیوند پروپیل سولفات – پروپیلن اکساید (PEO SO3)، اشاره نمود.

در سالهای اخیر محققان برای افزایش بهبود خونسازگاری بیومتریال‌ها، از پیوند هپارین به سطح آن‌ها استفاده نموده‌اند که نتایج رضایت بخشی به همراه داشته‌است. یکی از مهمترین مشکلات در این راه، پیوند یونی هپارین (surfaces bearing ionically bound heparin) به سطح پلی‌یورتان است. هپارین می‌تواند به صورت کووالانی با گروه‌های آمین یا هیدروکسیل آزاد ایزوسیانات پیوند برقرار سازد. در بین تمام روش‌هایی که باعث تثبیت هپارین می‌شود، موثرترین روش استفاده از تابش اکسیژن پلاسمای یونیزه شده‌است که باعث پیوند با پلیمر می‌شود.

نتایج خونسازگاری حاصل از هپارینیزه شدن پلی‌یورتان، نشانگر فعالیت کمتر پلاکتها و پروتئین‌های پلاسما است که منجر به کاهش تشکیل لخته خون می‌شود. همچنین چسبندگی سلول‌های تک هسته‌ای و ترشح فاکتور نکروز تومور در تماس با پلی‌یورتان هپارینیزه شده کمتر گزارش شده‌است. از دیگر راه‌هایی که می‌توان بدون استفاده از پوشش‌های هپارینی به یک پلی‌یورتان خون سازگار دست یافت، پوشش دهی یا تثبیت شیمیایی داروهای ضد لخته زا یا مولکول‌هایی نظیر مشتقات Urookinase, Prostacyclin, ADPase, Dipyridamol, Glucose و اتم‌های نقره گزارش شده‌است.

پلی‌یورتان‌های دارای گروه‌های سولفونات، لخته زایی بسیار کمی نسبت به پلی‌یورتان‌های معمولی داشت. پلی‌یورتان‌های سولفونات شده ترومبین (آنزیم مؤثر برای ایجاد لخته) را مصرف کرده و بر پلیمریزه شدن فیبرینوژن تأثیر مستقیم می‌گذارد.

ایجاد پیوند کووانسی پپتید Arg Gly Asp (RGD)، با ستون اصلی پلیمر نیز یکی دیگر از روش‌های بهبود خواص خون سازگاری پلی‌یورتان‌ها است که در نتیجه چسبندگی سلول‌های اندوتلیال به سطح پلیمر افزایش می‌یابد.
تخریب پلی‌یورتان‌ها

همه پلیمرها امکان تخریب دارند و پلی‌یورتان‌ها نیز از این قاعده مستثنی نیست. جهت جلوگیری از تخریب پلی‌یورتان‌ها روش‌های مختلفی وجود دارد که شامل هیدرولیز، فتولیز، سلولیز، تومولیز، پیرولیز (تجزیه در اثر حرارت) و تخریب بیولوژیک، ترک بر اثر استرس محیطی، اکسید شدن و تخریب بوسیله میکروب و قارچها می‌شود. در حالت بیولوژیک تنش محیطی باعث ایجاد ترک می‌شود که در نهایت شکست ممکن است به وجود آید و باعث ایجاد تخریب سطحی ویژه در پلیمر شود. آنزیم‌ها نیز می‌توانند باعث تخریب پلی‌یورتان‌ها شود. تخریب میکروبی، یک واکنش تجزیه شیمیایی است که به وسیله حمله میکروارگانیسم‌ها صورت می‌گیرد. آنزیم‌ها و قارچ‌ها نیز ممکن است پلی‌یورتان‌ها را تخریب کند.

پیوندهای مستعد برای تخریب هیدرولیتیک در پلی‌یورتان‌ها، پیوندهای استری و یورتانی است. استرها به اسید و الکل تجزیه می‌شود و پیوندهای یورتانی در نتیجه تخریب شدن به کربامیک اسید و الکل هیدرولیز می‌شود.

ترکیبات مسئول تخریب پلیمرها در بدن شامل آب، نمک، پراکسیدها و آنزیم‌ها است. به‌طور کلی مولکول‌هایی مانند ویتامین‌ها و رادیکال‌های آزاد باعث تسریع کردن تخریب می‌شود. اگر پلی‌یورتان هیدروفوب باشد تخریب معمولاً در سطح مواد انجام می‌شود. اگر پلی‌یورتان‌ها هیدروفیل باشد، آب در توده پلیمر وارد شده و تخریب در سرتاسر ماده اتفاق می‌افتد.
تخریب پلیمر

تخریب پلیمر در مایع Media (پلاسما و بافت) به‌طورکلی شامل مراحل زیر است.

۱) جذب مدیا در سطح پلیمر،

۲) جذب مدیا به توده پلیمر،

۳) واکنش‌های شیمایی با پیوندهای ناپایدار در پلیمر

۴) نقل و انتقال تولیدات تخریب از ماتریکس پلیمر و جذب سطحی محصولات تخریب از سطح پلیمر.

تأثیر آبدوستی بر میزان تخریب پلی‌یورتان‌های

یکی از مشکلات اصلی کاشت پلی‌یورتان‌ها در حالت vivo in تمایل آن‌ها برای آهکی شدن و تخریب شدن است. اکثر ایمپلنت‌های پلی‌یورتانی در حالت in vivoاز طریق هیدرولیز تخریب می‌شود.

الاستومرهای زیست تخریب پذیر در ایمپلنت‌های قلبی و عروقی، داربستها برای مهندسی بافت، ترمیم غضروف مفصل، پوست مصنوعی و درتعویض و جانشینی پیوند استخوان اسفنجی استفاده می‌شود.

مواد هیدروفیل مانند هیدروژل‌ها، به عنوان سدی برای چسبندگی بافت‌ها استفاده می‌شود. موادی با هیدروفیلی کم، باعث چسبندگی تکثیر سلول‌ها می‌شود که برای داربست‌های مهندسی بافت مناسب است.
کاربرد پلیمرهای زیست تخریب پذیر در پزشکی

واکنش پلی‌یورتان زیست تخریب پذیر با استئوبلاست‌ها و کندروسیت‌ها و ماکروفاژها

امروزه کاربرد پلیمرهای زیست تخریب پذیر در پزشکی مطرح است. مواد زیست تخریب پذیر کاربردهای بی‌شماری در پزشکی و جراحی دارند و این مواد طوری طراحی شده‌است که در حالت in vivo تخریب شود.

تصور کلی از زیست سازگاری بر اساس واکنش میان یک ماده و محیط بیولوژیک است. واکنش بافت‌ها و سلول‌ها در خیلی از موارد بوسیله پاسخ التهابی مشخص می‌شود.

در مهندسی بافت از ماتریس‌ها و داربست‌های زیست تخریب پذیر پلیمری به عنوان حامل سلول برای بازسازی بافت‌های معیوب استفاده می‌شود. به‌طور کلی، ایمپلنت‌ها نباید موجب پاسخ غیرعادی در بافت‌ها ویا تولید مواد سمی یا تأثیرات سرطان زایی در بافت شوند. در تحقیقات in vivo، فوم پلی‌یورتان زیست تخریب پذیر، زیست سازگاری مطلوبی از خود نشان می‌دهد. این پلی‌یورتان‌ها هر چند که باعث فعال شدن ماکروفاژها می‌شود ولی تأثیرات سمی و سرطان زایی در بدن ندارد.

در یک تحقیق جدید، جهت ارزیابی زیست سازگاری از فوم پلی استر پلی‌یورتان زیست تخریب پذیر با سایز سوراخ‌ها ۱۰۰ ۴۰۰ m استفاده شده و واکنش کندروسیت‌های و سلول‌های استئوبلاست موش [line Mc3T3 E۱] با فوم پلی‌یورتان زیست تخریب پذیر (Degrapol foam) مورد بررسی قرار گرفته شده‌است پاسخ سلولی که شامل: رشد، فعالیت سلول‌ها و پاسخ سلولی استئوبلاست‌ها و ماکروفاژها به محصولات تخریب در نظر گرفته شد. سلول‌های استئوبلاست‌ها و کندرویست‌ها از موش‌های صحرایی نر بالغ جدا شده بود.

جهت سنتز این کوپلیمر نیز مقدار برابر از PHB– دی ال و پلی کاپرولاکتون دی ال در ۱ و۲ دی کلرو اتیلن حل شده و به صورت آزئوتروپیکالی به وسیله برگشت حلال تحت نیتروژن خشک، سنتز شد. این پلی استریورتان، یک بخش آمورف و یک بخش کریستالی دارد و همچنین دی ال با PHB تشکیل حوزه‌های کریستالی می‌دهد و دی ال با پلی کاپر. لاکتون تشکیل حوزه‌های آمورف می‌دهد.

پس از کشت سلولی، اسکن به وسیله میکروسکوپ الکترونی (SEM) نشان می‌دهد که سلول‌ها در سطح و داخل حفره‌های فوم رشد می‌کند و سلول‌هایی که در سطح فوم دیده می‌شود و به صورت یک نمایش سلولی مسطح و چند لایه سلول متلاقی، دیده می‌شود.

نتایج به دست آمده نشانگر این مطلب است که استئوبلاست‌ها و ماکروفاژها توانایی بیگانه خواری و فاگوسیتوز محصولات تخریب را دارندو محصولات تخریب در غلظت کم، تأثیری در رشد و عملکرد استئوبلاست‌ها نمی‌گذارد. به‌طور کلی کندروسیت‌ها و استئوبلاست‌ها در فوم زیست تخریب پذیر تکثیر یافتند و فنوتیب شان را نگاه داشت. این مطلب نشان می‌دهد که این داربست‌ها برای مراحل ترمیم استخوان مفید است.
نحوه به‌کارگیری پلی یورتان

پلی یورتان (پلی اورتان) به عنوان یک عایق بسیار مناسب شناخته شده است، که کاربردهای آن با تغییر دانسیته و سلول بندی متفاوت می‌باشد. این مواد می‌تواند به عنوان عایق صوت (مواد سلول باز) یا عایق حرارت (مواد سلول بسته) استفاده شود. عایقکاری به کمک پلی یورتان عموماً یا به صورت پاشش یا تزریق یا پنل پیش‌ساخته می‌باشد.

خواص پلی یورتان

چسبندگی فوق‌العاده بالا با انواع سطوح مختلف

مقاومت بالا در برابر عوامل خورنده محیطی وجوی

حفظ قابلیت انعطاف در دامنه وسیع دمایی

در درزهای عمودی شره نمی‌کند

غیر سمی و داری تاییدیه مصرف در مجاورت آب آشامیدنی

این محصولات در بسته‌بندی سوسیس شکل با حجم ۶۰۰ cc تولید شده و استفاده می‌گردد.

با توجه به اینکه این محصول در مجاورت رطوبت با سرعت بیشتری خشک شده در زمان نگهداری و اجرا میزان رطوبت محیط بسیار مهم می‌باشد تا از خشک نشدن در زمان نگهداری و چسبیدن به درزها در زمان اجری آن‌ها اطمینان حاصل شود.[۱]

ابزار پیش‌ساخته دکوراتیو پلی اورتان و پلی استایرن با دانسیته بالا در انواع ابزار گلویی ، نور مخفی ، پروفیل‌های قاب ، قرنیز ، قابهای پیرامونی در و پنجره ، طاقچه‌ها ، گل‌ها و گنبدهای زیبای سقفی ، ستون و سرستون. جهت ایجاد طرح‌ها و جلوه‌های زیبا و طبیعی در

سبک‌های معماری مدرن برای معماران و سازندگان

ابزارهای پلی یورتان و پلی استایرن جایگزین مناسب گچبری سنتی با وزن بسیار سبک و صرفه اقتصادی و سرعت نصب بالا.

ابزار پیش‌ساخته دکوراتیو پلی یورتان قابل استفاده در تمامی ساختمان‌ها اعم از ساختمان‌های در حال نوسازی ، بازسازی ، ساختمان‌های با مصالح سنتی و یا با مصالح سبک و نوین و به ویژه ساختمان‌های با سبک معماری مدرن می‌باشد . این محصول که در قالب طرح گچبری‌های ساختمانی می‌باشد با توجه به نوع طرح بسیار متنوع و جذاب بوده که مورد استقبال عمومی قرار گرفته‌است

ابزار گلویی کنج پلی یورتان. ابزارهای سطوح صاف پلی یورتان. ستون و سرستون دکوراتیو پلی یورتان. گل سقف پلی یورتان در دکوراسیون داخلی. ابزار دکوراتیو

درنیکا دکور نماینده فروش ابزارهای پیش‌ساخته ساخت کشورهای معتبر اروپایی (بلژیک و آلمان) . ابزارهای پیش‌ساخته با نصب سریع و کیفیت بالا و وزن سبک. قرنیز منعطف مناسب برای سطوح منحنی شکل/گچبری پلی یورتان/ستون پلی اورتان/نرده سبک

– هزینه کمتر ، وزن بسیار سبک

– حمل و نقل آسان ، قابلیت عبور تجهیزات ساختمانی (کابل ، لوله سیم و …)

– قابلیت ترمیم‌پذیری ، عدم تغییر رنگ و ترک خوردگی با گذشت زمان

– نصب سریع و آسان در کوتاهترین زمان ممکن (بدون جابجایی در وسایل محل مورد نظر)

– قابلیت نورپردازی و رنگ‌پذیری فوق العاده سریع (رنگهای پلاستیک و اکرلیک)

گچبری آسان با استفاده از محصولات گچبری از جنس فوم فشرده پلی استایرن و پلی یورتان، بی نظیرترین جایگزین گچبری سقف و دیوار می‌باشد.

صفحات فوم فشرده پلی استایرن متشکل از ساختار ماده پتروشیمی GPPS می‌باشد که دارای بافت تو در تو به هم فشرده و خالی از حفره می‌باشد که به صورت تزریقی به روش صنعتی همراه با ذوب این ماده در فشار بالا با بهره‌گیری از آخرین تکنولوژی جهان تولید می گردد و به دلایل بسیار از جمله

استحکام بالا(Copressive Strength)

قدرت عایق بندی (Isolation)

جذب آب پایین(Water Absorption)

قیمت پایین

عدم انتشار گاز سمی در هنگام آتش سوزی

به شدت رو به گسترش می‌باشد.

مطالب پیشنهادی

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا